Road access introduction risk analysis
calc_road_access_risk.Rd
Calculates the risk of introduction for an animal disease using an accessibility to roads index.
Usage
calc_road_access_risk(
epi_units,
road_access_raster,
aggregate_fun = c("mean", "max", "min", "sum")
)
Arguments
- epi_units
epidemiological units dataset
- road_access_raster
road access raster data contains road accessibility index. Can be aquired using
riskintrodata::download_road_access_raster()
andterra::rast()
.- aggregate_fun
function to use to aggregate raster values over epi units area, default is
mean
.
Value
list with class ri_analysis
that contains:
ri
: ansf
dataset containing the road accessibility risk summarised over each epidemiological unit. Contains the following columns:
eu_id
: unique identifier for each epidemiological uniteu_name
: name provided inepi_units
dataset.road_access_risk
: road access risk of inroduction score (unscaled)geometry
: geometry for each epidemiological unit of typePOLYGON
orMULTIPOLYGON
.
This data can be extracted from the ri_analysis
object with extract_raster()
raster
: aSpatRaster
containing the cropped raster that covers only the epidemiological units areas.
Examples
if (FALSE) { # \dontrun{
library(riskintroanalysis)
library(riskintrodata)
library(dplyr)
library(terra)
library(sf)
library(ggplot2)
# Example with raw sf files, previously downloaded with geodata::gadm()
tunisia_raw <- read_sf(system.file(
package = "riskintrodata",
"samples", "tunisia", "epi_units", "tunisia_adm2_raw.gpkg"
))
# Apply mapping to prepare colnames and validate dataset
tunisia <- apply_mapping(
tunisia_raw,
mapping = mapping_epi_units(
eu_name = "NAME_2",
geometry = "geom"
),
validate = TRUE
)
road_raster_fp <- download_road_access_raster()
road_raster <- rast(road_raster_fp)
road_access_risk <- calc_road_access_risk(
epi_units = tunisia,
road_access_raster = road_raster,
aggregate_fun = "mean"
)
# plotting the raster data
raster <- extract_raster(road_access_risk)
plot(raster)
# plotting the risk of introduction dataset
ggplot(data=road_access_risk, aes(fill = road_access_risk)) + geom_sf()
} # }